

CRLS Mathematics Depart	ment					
AB & BC Calculus Curriculum Map/Pacing Guide					page 3 of 9	
Understanding Goals/	# of B	locks	· · · · · · · · · · · · · · · · · · ·	Resources/Assessments		
Essential Questions	AB	BC	Students will be able to	book	other	
Unit 3: Applications of Derivatives	24	15	Totals Always Include 2 blocks for Review & Test		District Google Documents site	
How do you find limits when function is indeterminate?		1	• apply L'Hopital's Rule	8.2	IMSA LimitsAgain.pdf	
<i>How do you analyze the behavior of a function?</i>	1	1	• apply the Mean Value Theorem	4.2	Calculus in Motion	
	5	4	• analyze the behavior of a function using its first two derivatives	4.2		
How is the tangent line useful?			• find the critical points of a function	4.2		
			 find when a function is increasing or decreasing 	4.1		
<i>How can you approximate the value of a function?</i>			• find the inflection points of a function	4.3		
			 find when a function is concave up or concave down 	4.3		
How are the rates of change of variables related?	4	2	 optimize the value of a variable given constraint equations 	4.4	Calculus in Motion	
	3	1	• use the tangent line to approximate function values	4.5		
How can you apply complete graph analysis to analyze the motion of an object?			• apply Newton's Method	4.5	Calculus in Motion	
What are dx and dy?	1	1	 use differentials to approximate function values 	4.5		
	5	2	 find the rate of change of a variable using related rates 	4.6	Calculus in Motion	
	3	1	• analyze the motion of a particle along a line given its position equation			

	:			
1			1	
			1	
			1	
		·		

CRLS Mathematics Depar						
AB & BC Calculus Curriculum Map/Pacing Guide					page 4 of 9	
Understanding Goals/	# of B	locks		Resources/Assessments		
Essential Questions	AB	BC	Students will be able to	book	other	
Unit 4: Definite Integrals	16	10	Totals Always Include 2 blocks for Review & Test		District Google Documents site	
How can you approximate the area under a curve?	4	1	• approximate the area under a curve using the Rectangle Approximating Methods	5.1	Calculus In Motion; KhanAcademy.org; IMSA Approx1.pdf	
			• approximate the area under a curve using Riemann sums	5.2	The Write Path II Math "But it's not a rectangle!"	
How can you find the exact area under a curve?		1	• approximate the area under a curve using the Trapezoidal Rule	5.5	Calculus In Motion; IMSA Approx3.pdf	
		1	• find the anti-derivative of a function	5.4		
<i>How do you find the equation of the anti-derivative of a function?</i>	5	2	• use the definite integral to find the area under a curve analytically and geometrically	5.2	PreCal: area formulas for circle, trapezoid, triangle, trig identities	
	1	1	• find the average value of a function over a given interval	5.3,5.5		
What is the connection between the area under a function and the anti- derivative of the function?	4	2	• apply both parts of the Fundamental Theorem of Calculus	5.3,5.4	Calculus In Motion; page 289 Exploration 2	

CRLS Mathematics Depar	tment				
AB & BC Calculus Curricu		page 5 of 9			
Understanding Goals/	# of Blocks			R	esources/Assessments
Essential Questions	AB	BC	Students will be able to	book	other
Unit 5: Differential Equations	17	13	Totals Always Include 2 blocks for Review & Test		District Google Documents site
How do you find the equation of a function given its derivative?	6	4	• find the integral of a function using the substitution method and integration by parts	6.2,6.3	
	3	1	• solve a separable differential equation	6.2	APCentral Module on Differential Equations
How will graphing the slope field of a function help you analyze the function?	2	1	• graph a slope field		P.Mili's handout, Calculus In Motion, APCentral SlopeField pdf by Nancy Stephenson, TI-84 Slope, Euler's Method GSP (FIRST CLASS), http://staff.imsa.edu/~dover/Site/Seme ster_Two.html, http://worrydream.com/KillMath
		1	• apply Euler's Method		6.1 Exer 41-48, AP FRQ
How do find integral of rational function?		1	• apply Method of Partial Fractions	6.5	
What types of real-life situations are modeled using exponents and logarithms?	4	3	• find the model for an exponential growth or decay problem, Newton's Law of Cooling	6.4	
		1	• find the model for a logistic growth problem	6.5	Calculus in Motion, AP FRQ

CRLS Mathematics Depart	tment				
AB & BC Calculus Curricu		page 6 of 9			
Understanding Goals/	# of B	locks		R	esources/Assessments
Essential Questions	AB	BC	Students will be able to	book	other
Unit 6: Applications of Definite Integrals	18	12	Totals Always Include 2 blocks for Review & Test		District Google Documents site
<i>How do you find the net change of a variable given its rate?</i>	5	1	• use the definite integral to discuss the net change of a variable given its rate	7.1	Calculus in Motion, AP FRQ
How do you find the area between curves?	5	1	• find the area between curves	7.2	Calculus in Motion, AP FRQ
How do you find area between polar functions?		2	• find area with sector-shaped differentials	10.3	Nate Burchell's PolarFunctionsGSP (FIRSTCLASS)
<i>How do you find the volume of an object?</i>	6	4	• find the volume of a solid with known cross-sections and a solid of revolution using the washer and shell methods	7.3	Calculus in Motion, AP FRQ, Bundt cake, orange/pear, rice crispy treat models
<i>How do you find the length of a curve</i>		2	• find the length of a rectangular curve and a parametric curve	7.4	Calculus in Motion, AP FRQ
		2	• find the work equation for various different physics-type problems	7.5	Exer.#1-11 page 425

CRLS Mathematics Depar						
AB & BC Calculus Curric		page 7 of 9				
Understanding Goals/	# of B	locks		Re	Resources/Assessments	
Essential Questions	AB	BC	Students will be able to	book	other	
Unit 7: Improper Integrals, Rates of Growth		6	Totals Always Include 2 blocks for Review & Test		District Google Documents site	
What is a sequence?What is convergence?		1	• apply limits to understand infinite sequences	8.1	GeometricSeries.pdf (IMSA)	
What functions grow faster than others?		1	• compare the relative rates of growth of <i>functions</i>	8.2		
How do you find the area under the curve when you are working with infinity?		2	• express an improper integral as a limit, evaluate the limit	8.3	ImproperIntegrals (FIRSTCLASS)	

CRLS Mathematics Depar	tment						
AB & BC Calculus Curricı		page 8 of 9					
Understanding Goals/	# of Blocks				Resources/Assessments		
Essential Questions	AB	BC	Students will be able to	book	other		
Unit 8: Convergence, Infinite Series		13	Totals Always Include 2 blocks for Review & Test		District Google Documents site		
How do you find the sum of an infinite geometric series?		1	 find the sum and partial sum of an infinite geometric series 	9.1	APCentral Visual Proofs of Calculus		
		1	• find the power series of a function	9.1	Calculus In Motion		
How can you rewrite functions as equivalent infinite polynomials?		3	• find the Taylor and Maclaurin series for a function around different values of x and the Lagrange Error	9.2,9.3	Calculus In Motion		
Does an infinite series have a finite sum?		3	• test for the convergence of a function using the various testing methods	9.3	Lagrange Pdf		
What can predict convergence without actually summing the series?		3	• find the radius and interval of convergence for a power series	9.4,9.5	Convergence Test Summary, numerous IMSA pdfs		
					http://staff.imsa.edu/~dover/Site/Seme ster_Three_files/TaylorReview.pdf		

CRLS Mathematics Department	
AB & BC Calculus Curriculum Map/Pacing Guide	page 9 of 9
<u>Resource List:</u>	
http://staff.imsa.edu/~dover/Site/Calculus.html	
Calculus in Motion	
Foerster, Calculus Explorations	
http://calculus.scotthighskyhawks.com/calcab	
Firstclass calculus desk	
APCentral teacher resources	
khanacademy.org	
burchellmath.blogspot.com	
TI programs	
Online applets	
Wolfram Alpha	
The Write Path II Math	
Amsco AP prep	
Calculus: Graphical, Numerical, Algebraic textbook	
Mathematica	